Attention-Based Pose Sequence Machine for 3D Hand Pose Estimation
نویسندگان
چکیده
منابع مشابه
Dense 3D Regression for Hand Pose Estimation
We present a simple and effective method for 3D hand pose estimation from a single depth frame. As opposed to previous state-of-the-art methods based on holistic 3D regression, our method works on dense pixel-wise estimation. This is achieved by careful design choices in pose parameterization, which leverages both 2D and 3D properties of depth map. Specifically, we decompose the pose parameters...
متن کامل3D Hand Pose Estimation with Neural Networks
We propose the design of a real-time system to recognize and interpret hand gestures. The acquisition devices are low cost 3D sensors. 3D hand pose will be segmented, characterized and track using growing neural gas (GNG) structure. The capacity of the system to obtain information with a high degree of freedom allows the encoding of many gestures and a very accurate motion capture. The use of h...
متن کاملTemplate-based Pose Estimation and Tracking of 3D Hand Motion
The problem of initialising and tracking three dimensional human hand motion from monocular view is addressed in this thesis. We aim to solve the initialisation and tracking in a unified framework. To that end, tracking is formulated as pose estimation of human hand at every frame. The estimated poses at each frame are then combined into smooth trajectories. Template matching forms the basic bu...
متن کاملDatabase Indexing Methods for 3D Hand Pose Estimation
Estimation of 3D hand pose is useful in many gesture recognition applications, ranging from human-computer interaction to automated recognition of sign languages. In this paper, 3D hand pose estimation is treated as a database indexing problem. Given an input image of a hand, the most similar images in a large database of hand images are retrieved. The hand pose parameters of the retrieved imag...
متن کاملTowards Good Practices for Deep 3D Hand Pose Estimation
3D hand pose estimation from single depth image is an important and challenging problem for human-computer interaction. Recently deep convolutional networks (ConvNet) with sophisticated design have been employed to address it, but the improvement over traditional random forest based methods is not so apparent. To exploit the good practice and promote the performance for hand pose estimation, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2968361